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Abstract
The paper presents outcomes of an experimental study in 
which various modes of HMM labelling were tested on two 
groups of Czech speakers differing in the quality of their 
performance. Apart from the highest precision for the given 
speaking style - in this case read connected speech - we were 
also looking for indications that the HMM labeller might 
function differently for the group of good speakers and for the 
group of poor speakers. It turned out that impressionistically 
evaluated good and poor speakers were, at least in some of the 
modes, labelled with a different degree of precision. 

1. Introduction 
Phonetic research in recent years is to a great extent dependent 
on large corpora of speech. Speech databases have been 
successfully used to provide useful information on quite 
diverse types of problems. The common property of such 
databases is that the material in them is labelled. Manual 
labelling of speech items, however, can be a tedious job, and 
researchers have devoted a lot of effort to find at least semi-
automatic ways of labelling corpora since it is generally 
accepted that the greater the pool of correctly labelled speech 
items, the more reliable findings it provides. In the field of 
segmental research, one usually requires correctly labelled 
boundaries of individual phones which represent phonemes of 
a given language. This task can be relatively successfully 
accomplished with various automatic speech recognition 
(ASR) methods, such as the standard HMM-based forced 
alignment algorithm (e.g., [1], [2], [3]). 

It is clear, however, that characteristics of speech can 
change considerably as a function of different speaking styles 
(e.g., [4], [5]). Instead of looking for the best universal 
labelling tool then, it might seem quite practical to try to 
design the best labelling tool for a given speaking style. For 
that purpose, though, one has to know which speaking styles 
or modes are different enough to make use of a focused 
HMM procedure. There have been some useful and 
sometimes quite elaborate attempts to classify speaking styles 
[6], but it is still true that even within one style, human 
listeners can further classify the performance of a speaker 
with regard to proficiency and overall impression. The 
question is whether these differences are relevant to 
technologies used in ASR. In search for the answer, we 
decided to use read connected speech and investigate whether 
human assessment of the speaker's performance correlates 
with the success rate of several distinct HMM-based labelling 
modes.

The standard way of evaluating the performance of an 
automatic segmentation procedure is to compare the results 
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manually labelled data [7]. To this end, we used 
ally labelled paragraphs read by 25 good and 25 poor 
ers, and a trained HMM-based recognizer was used to 
boundaries of the known phones automatically. A 
ed analysis of the automatic labelling precision, such as 
is not available for the Czech language yet. 
e hypothesised the following outcomes. First of all, as a 
ypothesis, we could expect no differences between the 
and poor speakers for any of the labelling algorithm 
s used. At the same time, various algorithm settings 
 perform on the same level of precision. The opposite 

me would lead to higher precision of the labelling in 
f one of the groups. Intuitively, we might expect good 

ers to lead to greater success in correct placement of 
 boundaries. Moreover, various algorithms used would 
 from each other in their efficiency. All the other pos-
utcomes would be combinations of the previous two. 

he ultimate question then would be whether it is sensible 
nsider an HMM labelling tool that could readjust its 
s after receiving some sort of indication of a speech 
n order to increase its success rate. 

2. Method 

aterial 

up of 265 Czech university students were asked to read a 
story of nine sentences as fluently and as naturally as 
le; they were given adequate time for preparation. The 
ings were made under identical conditions in a sound-
booth with an electret microphone IMG ECM 2000 and 
ndcard SB Audigy 2 ZS. The recordings were later 
ted via headphones to 6 evaluators who were asked to 
 the performance of the speakers by awarding a mark 
1 to 4 based on the overall impression of speaker 
ncy. Mark 1 meant an excellent speaker, mark 2 a very 
speaker, mark 3 a just tolerable speaker and mark 4 a 
y inferior speaker. 
aturally, such marks are not parametric measures, which 
on statistical methods that can be used to process them. 
crude measure of a person’s performance, however, the 
e score across the 6 marks awarded by the assessors 

accepted. Cases with low homogeneity of opinion 
ring by 2 grades) were excluded from further 
ssing.
he arithmetic mean across all the scores awarded was 
Thus, the scores of ‘average speakers’ oscillated around 
alue. We chose arbitrarily a band of 0.6 points on both 
of the average score to find good and poor speakers. 
 with scores equal to or worse than 3.00 were classified 
or speakers’, while those with scores equal to or better 



than 1.78 were classified as ‘good speakers’. We ended up 
with 25 good and 25 poor speakers whose recordings were 
manually labelled by two experienced labellers as a reference 
for success rate analysis. The whole material consisted of 
about 2,500 words and 11,000 phones. 

2.2. HMM labelling setup 

We used HTK toolkit [8] to build an HMM forced alignment 
algorithm. In this section we give a more detailed description 
of the settings of the labelling procedure, especially the 
parameters whose influence was analyzed in the present study.  

2.2.1. HMM model structure 

A standard five-state model for Czech monophones with three 
emitting states joined by two additional non-speech models 
(for silence and short pause) were used. Obviously, context 
independent monophones must be considered for the purpose 
of finding phone boundaries. All speech models were left-
right models without any possible skips over a state. 

It is well known that this three-emitting-state structure 
may cause some problems in fast fluent speech, i.e., when the 
realization of the phone is shorter than the minimum duration 
corresponding to the given three states. To analyze the effect 
of this phenomenon was also one of the tasks of our study.  

Our initial experiments used HMMs with just one stream 
and no mixtures, but it is known that modelling can be 
considerably improved by using more mixtures of Gaussian 
functions describing the respective states, as well as more 
streams [9]. That is why we also used models with three 
streams and 32 mixtures, so as to analyze the effect of this 
more sophisticated modelling. 

2.2.2. HMM models training 

The models were trained by the standard Baum-Welch re-
estimation algorithm. As the target data were not sufficient 
for training, the training procedure was conducted on two 
other large databases: SpeechDat, a telephony database with 
signals sampled at 8 kHz, and SPEECON, with data sampled 
at 16 kHz. The target signals to be labelled had a sampling 
frequency of 22.05 kHz, and they were adequately down-
sampled. The mismatch between the training set and the 
target data was not critical, since the target data did not 
contain any specific background noise.  

2.2.3. Phone inventory 

The inventory of phones was determined by requirements of 
ASR algorithms and originates from the Czech SAMPA. It 
does not contain certain specific allophones, e.g, it does not 
distinguish between the voiced [ ] and voiceless [ ], or 
between [x] and its voiced allophone. [ ], which is not a 
phoneme in Czech but resulted from phonetic reduction, was 
modelled as [e], and the glottal stop had to be modelled as a 
short pause. These distinctions are not crucial for ASR. 

2.2.4. Speech parameterization 

The five settings used in our experiments worked with two 
different parameterizations. First, it was standard mel-
frequency cepstral coefficients with energy, delta, and delta-
delta coefficients, known from the HTK toolbox as 
MFCC_E_D_A . Second, we also tested a parameterization 
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 on PLP cepstral coefficients, which entails a pre-
ssing stage eliminating additive noise. One of the aims 
r experiment was to check the contribution of such a 
t parameterization with respect to the mismatch between 
aining and target data. PLP cepstral coefficients with 
ocessing eliminating additive noise were evaluated by 
ol CtuCopy [10]. 
he precision of automated labelling is influenced by the 
is frame length and its time step. We used two frame 
s of 32 and 16 ms, in both cases with a 50% overlap. 
ard weighting by Hamming window and pre-emphasis 
7 were used in our parameterization. Table 5 sum-

es the five algorithm settings used in the present study. 

rev. Parameterization fs [kHz] Segments Mixtures
8o MFCC_E_D_A 8 32 / 16 No 
8x MFCC_E_D_A 8 32 / 16 Yes 
16o MFCC_E_D_A 16 16 / 8 No 
16x MFCC_E_D_A 16 16 / 8 Yes 
8o EXPLP_E_D_A 8 32 / 16 No 

Table 1: Overview of the five algorithm settings 

3. Results 
esults of automatic labelling were analyzed in terms of 
e algorithm settings, as well as in terms of the success 

f labelling individual classes of phones. In the following 
raphs and tables we focus on vowels (V), consonants 
onorants (sonor.), voiced obstruents (+voice), voiceless 
ents (-voice), and breaks (br.), which include pauses, 
tion sounds, and glottal stops (see Section 2.2.3.). 

verall precision 

 2 shows the deviations of automatic segmentation from 
n labelling across all five algorithm settings. The mean 
for all segments was 26.4 milliseconds. The results 
st that consonant onsets tended to be labelled with 
r accuracy than vowel onsets, but this difference is not 
icant. Within the consonant group, the boundary of 
ants was placed with significantly lower accuracy than 
oundary of obstruents (p < 0.005). The difference 
en voiced and voiceless obstruents was negligible (p = 
 The last column in Table 2 corresponds to breaks. The 
s largely contribute to the overall error; if we calculate 
viations only for the segment classes, the total mean 

drops to 23.1 ms. 

total V C sonor. +voice -voice br.
 [ms] 26.4 24.7 23.7 27.6 21.7 21.1 53.8

Table 2: Mean errors in labelling across all five 
labelling modes used 

omparison of individual labelling modes 

 3 shows the mean differences between the human 
ing and the explp8o mode. We can see that the 
mance of this algorithm is rather low when compared 
the average values in Table 2. Also the relationships 



between the individual phone groups are slightly different - 
the precision is lower with consonants than with vowels, and 
the difference between voiced and voiceless obstruents is 
more pronounced. 

total V C sonor. +voice -voice br.
mean [ms] 36.6 34.0 36.3 43.3 35.5 29.4 52.4
SD [ms] 3.1 3.0 2.6 3.5 4.8 3.1 18.8

Table 3: Labelling errors of the explp8o mode 

Table 4 below gives the results for the mfcc8o setting. There 
is a marked deterioration in the placement of the break onsets 
(br.), which accounts for the high total mean value. In 
general, the algorithm based on mel-frequency cepstral 
coefficients is more accurate than the one based on perceptual 
linear prediction cepstral coefficients. 

total V C sonor. +voice -voice br.
mean [ms] 25.8 23.4 20.9 23.1 18.8 21.0 72.9
SD [ms] 9.6 9.4 10.3 18.5 7.2 9.0 18.0

Table 4: Labelling errors of the mfcc8o mode 

The figures in Table 5 suggest that the incorporation of 
mixtures leads to higher accuracy (p < 0.005). The 
relationships between the individual phone groups remain the 
same as with the no-mixture mode. 

total V C sonor. +voice -voice br.
mean [ms] 23.2 21.3 17.9 19.0 15.7 18.8 71.1
SD [ms] 5.1 5.3 4.4 9.0 5.4 3.9 23.5

Table 5: Labelling errors of the mfcc8x mode 

The following two tables show results based on models 
trained on 16-kHz data (SPEECON database). Moreover, the 
analysis window is 16 ms, with a time step of 8 ms.

total V C sonor. +voice -voice br.
mean [ms] 26.9 26.7 25.2 30.3 21.9 21.6 39.3
SD [ms] 3.7 3.8 3.7 6.4 5.1 2.8 13.1

Table 6: Labelling errors of the mfcc16o mode 

Table 6 above gives the results of segmentation by the 
mfcc16o mode. First of all, there is a notable increase in 
accuracy for the detection of breaks. As for the accuracy of 
the individual segment classes, however, this algorithm 
setting has the highest mean error of all those based on mel-
frequency cepstral coefficients. 

total V C sonor. +voice -voice br.
mean [ms] 19.3 18.1 18.2 22.3 16.8 14.7 33.5
SD [ms] 2.6 2.8 2.5 3.6 3.5 2.8 12.9

Table 7: Labelling errors of the mfcc16x mode

Table 7 indicates that the mfcc16x algorithm is the most 
successful one. The mean error for the breaks remains low, but 
there is also a significant improvement in the accuracy of 
finding the onsets of speech segments. 
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other point of interest, we wanted to see whether the 
thms would be more successful in segmenting speech of 
speakers than that of poor speakers. The results are 
ed in Figure 1. 
 series of t-tests revealed that the segment onsets 
ed by the explp8o algorithm did not show different 
errors for the two groups (p = 0.23). However, the 

thms based on mel-frequency cepstral coefficients 
ced differences which were significant or marginally 
icant (0.01  p  0.08). 

igure 1: Diagram illustrating the difference between 
good and poor speakers across the five algorithms.

hone duration effect 

ing with 3-state HMM models with a prohibited skip 
any of the states means that a phone can only be 
zed within the span given by the analysis frame and its 
p. The comparison of phone durations of manually and 
atically labelled data was therefore also an important 
f this study. 
rst of all, we investigated actual durations of the real 
s, i.e., durations computed from the set of manually 
ed data. Even though this analysis was based on a limit-
t of data (11,000 phones), the results confirmed 
onal relations among Czech phones in fluent speech. 
 8 gives duration means and standard deviations in ms 
 longest and shortest monophones in our data set. 

 shortest phones longest phones 
duration SD duration SD

r] 46 18 [x] 114 68 
j] 50 16 [e:] 122 29 
] 50 26 [a:] 131 37 

d] 54 19 [au] 148 24 
l] 54 20 [eu] 164 24 

able 8: The longest and shortest phones (in ms) from 
the target data set. 

ost varying phones with respect to duration were the 
ves [x] (  = 114 ms; SD = 68 ms) and [f] (  = 102 ms; 
55 ms), as well as some vowel sounds, short and long. 
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The duration means in Table 8 suggest that we might expect 
better results for the setting 16/8, which provides for the 
minimum localized phone duration of 24 ms, while the 32/16 
mode requires the minimum phone duration of 48 ms.

Figure 2 illustrates the typical errors of the mfcc8o
algorithm setting (the 32/16 mode) in determining the 
duration of phones. [l] and [a:] have been chosen as 
representatives of short and long phones, respectively (cf.
Table 8). It is obvious from the histograms that the duration 
of the short [l] is determined with considerably lower 
accuracy with respect to the reference manual labelling. 

Figure 2: Phone duration with the mfcc8o HMM model. 

In Fig. 3, we can observe a better fit for both histograms. This 
can be accounted for by the 16-kHz sampling frequency, as 
well as the shorter frame window and time step. The improve-
ment is greater for the long [a:]. Slight improvement may also 
be observed for short phones representative [l] but some bias 
is still present due to the minimal duration requirement. 

Figure 3: Phone duration with the mfcc16x HMM model. 

4. Discussion 
As far as speaker quality is concerned, impressionistic 
evaluation of speakers as good or poor is not based solely on 
segmental characteristics of their speech. It is influenced by 
prosodic features, as well as their voice timbre. Nevertheless, 
we found clearly significant effect of speaker quality when 
we used the mfcc16o paradigm for phone boundary detection. 
Even the settings mfcc8x, mfcc16x, and mfcc8o produced 
marginally significant results. This indicates that the problem 
deserves further research. One of the possible reasons why the 
effect of speaker quality was not stronger might be the fact 
that the two large training databases comprised supposedly 
both better and worse speakers. 

As to the precision of labelling, the mfcc16x setting 
proved to be the best. One of the ways to achieve even greater 
precision might be to manipulate the overlap of analysis 
frames. We would be reluctant, however, to shorten the frame 
itself since this would lead to distortion of signal descriptors.

Other improvements can be sought in examining the mean 
errors of individual classes of segments. We found out that 
the main culprit here was the class br. (breaks), namely the 
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iour of the glottal stop, for which the original models 
not trained. We tried to model it as a short pause, but 
proach did not bring satisfactory result. It is clear that a 
ted trained model of the glottal stop is necessary. 

5. Conclusions 
etailed comparison of manual and automated labelling 
med on two distinct groups of speakers revealed that the 
que based on forced alignment of trained HMMs is 
ive to a factor of speaker quality as perceived by human 
rs. It also showed that for the Czech language it is 

sary to model the glottal stop as an independent speech 
nt. Its occurrence is quite high and ignoring it leads to 

r error rate even for labels of surrounding phones.
he analysis of phone durations suggests that for the 
h style analyzed in our study it is necessary to look for 
finer temporal resolution, especially for the sake of 
ximants and the central mid reduced vowel. 
he presented technique seems to be a good tool with 
ion sufficient for at least basic pre-labelling of larger 
tic corpora, as well as for application in some other 
of speech processing. 
 future, we would like to follow two lines of research:  
rther improvement in the precision of our labelling 
dure; b) investigation of various speaker-bound factors 
e labelling process. We would also like to test the 
ility of feeding the algorithms not with the list of exact 
s present, but with the ideal text transcription. 
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